首页> 外文OA文献 >Constructive Galois Connections: Taming the Galois Connection Framework for Mechanized Metatheory
【2h】

Constructive Galois Connections: Taming the Galois Connection Framework for Mechanized Metatheory

机译:建构性伽罗瓦连接:驯服伽罗瓦连接框架   机械化元理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Galois connections are a foundational tool for structuring abstraction insemantics and their use lies at the heart of the theory of abstractinterpretation. Yet, mechanization of Galois connections remains limited torestricted modes of use, preventing their general application in mechanizedmetatheory and certified programming. This paper presents constructive Galois connections, a variant of Galoisconnections that is effective both on paper and in proof assistants; iscomplete with respect to a large subset of classical Galois connections; andenables more general reasoning principles, including the "calculational" styleadvocated by Cousot. To design constructive Galois connection we identify a restricted mode of useof classical ones which is both general and amenable to mechanization independently-typed functional programming languages. Crucial to our metatheoryis the addition of monadic structure to Galois connections to control a"specification effect". Effectful calculations may reason classically, whilepure calculations have extractable computational content. Explicitly movingbetween the worlds of specification and implementation is enabled by ourmetatheory. To validate our approach, we provide two case studies in mechanizing existingproofs from the literature: one uses calculational abstract interpretation todesign a static analyzer, the other forms a semantic basis for gradual typing.Both mechanized proofs closely follow their original paper-and-pencilcounterparts, employ reasoning principles not captured by previousmechanization approaches, support the extraction of verified algorithms, andare novel.
机译:Galois连接是构造抽象语义的基本工具,其使用是抽象解释理论的核心。但是,Galois连接的机械化仍然仅限于受限的使用方式,从而阻止了它们在机械化的理论和经过认证的编程中的普遍应用。本文介绍了建设性的Galois连接,这是Galoisconnections的一种变体,在纸上和校对助手中均有效。关于古典伽罗瓦联系的很大一部分是不完整的;并启用更通用的推理原理,包括Cousot倡导的“计算”风格。为了设计建设性的Galois连接,我们确定了经典模式的使用受限模式,该模式既通用又适用于机械化独立类型的函数式编程语言。对我们的元理论而言,至关重要的是在Galois连接中增加一元结构以控制“规范效应”。有效的计算可能是经典的推理,而纯计算具有可提取的计算内容。通过我们的元论,可以在规范和实现的世界之间明确地移动。为了验证我们的方法,我们提供了两个案例,以使文献中的现有证明机械化:一个使用计算抽象解释设计静态分析器,另一个形成了渐进式打字的语义基础。采用以前的机械化方法未捕获的推理原理,支持提取经过验证的算法,并且新颖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号